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RECONSTRUCTION OF INITIAL BEAM CONDITIONS
AT THE EXIT OF THE DARHT II ACCELERATOR*

Arthur C. Paul, LLNL, Livermore, CA 94550, USA

Abstract

We consider a technique to determine the initial
beam conditions of the DARHT II accelerator by
measuring the beam size under three different magnetic
transport settings. This may be time gated to resolve the
parameters as a function of time within the 2000 nsec
pulse. This technique leads to three equations in three
unknowns with solution giving the accelerator exit beam
radius, tilt, and emittance. We find that systematic errors
cancel and so are not a problem in unfolding the initial
beam conditions. Random uncorrelated shot to shot
errors can be managed by one of three strategies: 1)
make the transport system optically de-magnifying; 2)
average over many individual shots; or 3) make the ran-
dom uncorrelated shot to shot errors sufficiently small.
The high power of the DARHT II beam requires that the
beam transport system leading to a radius measuring
apparatus be optically magnifying. This means that the
shot to shot random errors must either be made small
(less than about 1%) or that we average each of the
three beam radius determinations over many individual
shots.

1 THE DARHT II BEAMLINE

The DARHT II beamline[1] consists of a series of
transport solenoid lens and a kicker system to chop the
beam to be sent to the X-ray converter target. Between
the accelerator exit and the kicker is a series of three
solenoids, lens S0, S2, and S3. Lens S3 matches the
beam to the kicker system. Solenoid S2 is used in con-
junction with an insertable beam dump, the "shuttle
dump", to blow the beam up to a point that the density
of energy deposition in the dump is small enough to
allow the dumps survival. Solenoid S0, between the
accelerator and S2, is used to generate different beam
transport conditions for unfolding the initial beam condi-
tions at the exit of the accelerator. A viewing port just
in front of S2 is used to measure the beam radius. The
beam must be several cm in radius to allow the survival
of the viewing foil. The beam exiting this foil has been
scattered to the point, that solenoid S2 and the large
beam emittance induced by scattering in the viewing foil
is sufficient to diverge the beam on the shuttle dump.

2 THE PROCEDURE

We define several terms that will be used in this
-------------------------------
* This work performed under the auspices of the U.S.
Department of Energy by University of California
Lawrence Livermore National Laboratory under contract
No. W-7405-Eng-48.

work in order to avoid ambiguity. A "shot" is a 2 usec
beam pulse from the accelerator. At minimum, three
shots are required to re-construct the initial beam condi-
tions. A measurement of radius can be either a single
radius measurement or the average value of many indi-
vidual measurements. To avoid confusion, we will use
the term "determination" to be the measured radius
value used in the procedure of beam reconstruction.
Three radius determinations are required to re-construct
the beam parameters. These three determinations require
three shots if each determination is made using a single
shot, or 3N shots if each determination is the average of
N radius measurements for each determination. The
procedure of re-construction unfolds from the determina-
tions the beam emittance, initial radius and tilt. A single
unfolding yields a value for the beam emittance, initial
radius and tilt. Several unfoldings can be averaged to
give an improved value of these parameters.

Consider solenoid S2 set to 7.5 kG to expand the
beam onto the shuttle dump almost independent of how
the beam address S2. Consider a viewing foil to be
inserted into the beamline at the pump port just in front
of S2. This is the location were we make the radius
measurements. Take the point for beam re-construction
to be located 0.1111 meters beyond the exit of the
accelerator. The transport of the beam from the re-
construction point to the view port is then given by a
field free region L1, solenoid lens S0, and field free
region L2.
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Here L1, L2 are the drifts between the re-construction
point and S0, and S0 and the view port respectively,
C = cosθ , S = sinθ , k = B⁄(2Bρ) , and θ = kLs are the
solenoid focusing terms.

Three such transformations are required, one each
at a given setting of solenoid S0, say 0, 3.5, and 4.5 kG.
Consider three shots with the initial beam conditions of
r=0.5 cm, tilt=0, and emittance 3.0 cm-mr, the nominal
matched design values. For the three S0 settings above,
figure 1, the beam at the view port would be
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√  σ11 is the horizontal projection of the beam envelope,
√  σ33 is the vertical projection of the beam envelope.
Here the beam radius is √  σ11 = √  σ33 as the beam is
round and in its principle coordinate system, x=y=r.

3 THE SIGMA MATRIX

Let σ be the matrix characterizing the phase space
ellipse bounding all particles in the beam. Let R be the
linear transformation matrix from the point of beam
reconstruction to the location of the beam size measure-
ment. A point (x,x’) on the phase ellipse is given by

σ22x
2 − 2σ12xx′ + σ11x′2 = det(σ) 3.1
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In the principle coordinate system of a round beam
represented by the vector space ( x, x′, y, y′ )T we have
x = y and x′ = y′ . If the beam is un-correlated between
x and y, then σ31 = σ32 = σ41 = σ42 = 0 , and from sym-
metry σ13 = σ23 = σ14 = σ24 = 0 , but possibly tilted in
the horizontal and vertical phase space, then σ21 and σ43

would be non-zero, and eq(3.2) becomes
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The four dimensional linear transformation matrix

R =
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3.4

transforms the sigma matrix by the similarity transform

σ = R σo RT 3.5

Define the initial reconstruction sigma matrix elements
of σo for a round beam to be: a ≡ σ11

0
= σ33

0
,

b ≡ σ21
0

= σ43
0

, c ≡ σ22
0

= σ44
0

. The square of the

measured round beam size r2 ≡ σ11 ≡ σ33 is given by

r2 = 
R11

2 + R13
2 

 a + 2 
R11R12 + R13R14


 b + 

R12
2 + R14

2 
 c 3.6

Here we have explicitly expanded eq(3.5) in terms of
matrix eq(3.4) to represent σ11 in terms of the initial
beam sigma elements (a,b,c) and the values of the
transformation matrix. Three sets of radius determina-
tions, r1, r2, and r3 allow reconstruction of the initial
beam parameters, a, b, and c.

r3
2 = C31 a + C32 b + C33 c

r2
2 = C21 a + C22 b + C23 c

r1
2 = C11 a + C12 b + C13 c

3.7

C11,C12, .... are the known combinations of the transfor-
mation matrix elements for the jth determination.

Cj1= 
 R11

2 + R13
2 

 j
, Cj2= 

 R11R22 + R13R14

 j

, Cj3= 
 R12

2 + R14
2 

 j

Inverting we have the desired initial reconstructed beam
parameters.
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4 RECONSTRUCTION

Lets consider a case of beam reconstruction using
three shots with each radius determination subject to a
systematic error. As each radius determination would
have the same error, the reconstructed initial beam
radius should systematically have that same error, and
the beam emittance being an area should have twice that
error. Define the systematic measured radius error to be
δr , then

εo

δε_ __ = 2
R
δr_ __ 4.1

Lets now consider a case of un-correlated random
errors in the three shots used to reconstruct the beam
initial conditions. If the beam size is magnified by the
"optics" of the lens system, then a measurement error δr

will be magnified by the system magnification M. As
the three measurements are un-correlated, the magnified
errors will not cancel and we expect, for small errors
that the emittance error should grow as

εo

δε_ __ = 2M
R
δr_ __ 4.2

Note for small Mδr , that the emittance curve is a
straight line with slope M times that of the systematic
error curve, figure 2. For large Mδr the emittance curve
parallels the systematic error curve. The transition
between these two regimes appears to be some fractional
power of the parameter Mδr .

εo

ε_ __ = 1 + a zn − b z2n + ....... 4.3

z ≡ M
R
δ r_ __ 4.4

Figure 2 shows the unfolded beam emittance as a func-
tion of the magnitude of the un-correlated random error
in the beam size determination. The shape of the curve
is approximated by eq(4.3) with a=0.2, b=0.004, and
n=2/3. Let M be some measure of the optical
magnification of the system and δr be the radius error.



εo

ε_ __ = 1 + 0.2z2⁄3 − 0.004 z4⁄3 4.5

Consider our example with M=5.39 δr⁄R=10% , εo = 8.44 ,
a=0.2, n=2/3, then

εo

δε_ __ = anMzn−1

R
δr_ __ 4.6

δε = 1.90εo = 16.0 cm−mr

almost a 100% error in the reconstructed emittance.

5 NUMBER OF REQUIRED SHOTS

We consider two strategies for rendering the beam
emittance from N shots. The first uses one unfolding of
the emittance based on three radius determinations were
each radius determination is the average of N/3 shots.
Call this scenario A. The second strategy is based
averaging N/3 emittance unfoldings each of which are
the result  of three radius determinations with each radius
determination consisting of a single shot. Call this
scenario B. The fit to the emittance error curves are
represented by eq(5.1)

ε = a1 x + a2 xn 5.1

x is the error in percent and ε is the emittance in cm-mr.
This equation is used to fit scenarios A and B. Scenario
A is well represented by a 0.72 power law. Scenario B
is represented by a 0.5 - 0.6 power law. Note that the
lower bounds, are straight lines for large errors given a
lower bound to the emittance independent of the value
of the random error, figure 3.

The reason that making many emittance determi-
nations with out averaging the radius values gives an
better value for the average value of the unfolded beam
emittance is that values of emittance that by the luck of
the draw (random number sequence) that are negative or
zero are averaged out by the positive random values. In
scenario A, were we unfold just one emittance but aver-
age the radius determinations yield a negative or zero
value for some random sequences. With just one unfold-
ing there are no positive values to average this unfor-
tunate value.

6 CONCLUSIONS

The beam emittance is related to the area in phase
space occupied by the particles comprising the beam.
The reconstruction of the emittance by a radius measure-
ment with error δr should yield an error in the emit-
tance of at most 2δr. With a system of optical
magnication M the error is 2Mδr . Use of the shuttle
dump diagnostic on DARHT II to determine the beam
emittance to within a factor of two using a minimum
number of shots requires either 1) the random un-
correlated shot to shot errors be less than about 1%, or
2) we average 30 to 60 shots using scenario B with ran-
dom errors some where in the range of 5 to 10 percent.
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Figure 1. Over plot of the three beam envelopes for the
example of beam reconstruction with solenoid S0 at 0,
3.5, and 4.5 kG. The radius measurement is made at
view port located at 7.20 meters.

Figure 2. Unfolded beam emittance vs random error in
the beam radius measuremet. The exact value and the
range of values for a systematic error is also shown.
The radial magnication of 5.4 amplifies the error.

Figure 3. Required number of shots for a given emit-
tance range vs radial error using averaging of emittance
value method. Nominal beam radius 0.95 cm, tilt -0.35,
and emittance of 8.44 cm-mr.
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